[摘 要]在数学专业课程教学中融入数学建模思想具有其必要性与重要性。数学专业课程教学应将数学建模思想融入数学分析、高等代数、概率论与数理统计、常微分方程课程教学中。对教学方法进行必要的改革,更新教材内容,建立新的课程体系。
[关键词]数学建模 数学专业课程 课程教育
[中图分类号] g640 [文献标识码] a [文章编号] 2095-3437(2013)15-0106-03
在知识经济时代,数学科学的地位发生了巨大的变化,数学理论与方法不断扩充,数学应用越来越广泛和深入。传统的数学教育重视的是数学知识体系的传授,数学概念、定义、定理及基本计算方法的传授,课堂教学基本以教师为中心,以教材为蓝本,内容抽象,学习难度较高,学时少,内容多,不重视如何应用数学方法解决实际问题,忽视了训练学生如何从实际问题出发提炼出数学模型,以及如何用数学知识来解决实际问题的环节。笔者认为将数学建模思想融入数学专业课程教学中,能为数学与外部世界构建一架桥梁,改变学生的学习方式,提高课堂教学效率,从而培养学生提出问题、分析问题、解决问题与科学探究的能力,是对数学教学体系和内容改革的一个有益尝试。
一、在数学专业课程教学中融入数学建模思想的必要性与重要性
数学家吴文俊曾说过,“数学要真正得到应用,数学建模是取得成功最重要的途径之一”。数学建模是如何定义的呢?数学建模竞赛全国组委会主任李大潜这样来解释,数学是一门重要的基础学科,它的呈现形式是非常抽象的,而它丰富的内涵往往是掩盖在其抽象的形式背后的,学生不能理解,往往认为学数学无用。现实中我们要解决一个工程技术、经济建设、控制与优化、预报与决策或是社会领域等方面的问题,首先要在实际问题与数学问题之间架设一个桥梁,把实际问题转化为数学问题,其次要对它进行分析和计算,求得结果,最后要验证这个结果是否符合实际,其中最关键的就是用数学语言来表述我们所要研究的对象,即建立数学模型。可见,数学建模是联系数学理论与实际问题的桥梁,它是对实际问题进行分析,建立数学模型,对模型求解并用于处理实际问题的。可见,在各个专业开设数学建模课程,同时积极参加全国大学生数学建模竞赛,在数学专业课程中努力融入数学建模思想,是值得大力提倡的做法。
二、在数学专业课程教学中融入数学建模思想的一些建议
(一)更新教材内容,建立新的课程体系
教材是教师“教”和学生“学”的主要依据,教材编写的好坏与教学质量有直接的联系。传统的数学教材内容是一个完整的知识体系,是以“知识点为中心”来呈现的,知识点非常抽象且难以理解。而新的课程体系的指导思想是以提高数学素质为目的, 从基础出发,同时注重理论联系实际,把数学建模思想真正融入数学专业课程当中。在将纯理论的数学知识与实际应用联系起来时,最好在学习定义、性质、定理等都能介绍相关的背景知识或者是与之有关的小故事,让学生了解该定义与定理是如何在实际中产生的,能解决实际中的哪些问题,从而提高学生的学习兴趣,让他们积极主动地探索,并进一步提高学生的数学应用能力。最后,在新教材的编写上面应注重教育理念的更新,教材内容的呈现方式,注重数学与现实生活的联系,培养学生的问题意识。
(二)对教学方法进行必要的改革
传统的数学专业课教学一般采用教师讲、学生听的教学模式, 始终把学生当成是知识的容器,这种以知识为中心的模式有必要进行改革了。我们的教学重点应该是培养学生具备获取知识的能力,主动探索的精神,自我思考的意识。教师在讲授时可以创设丰富的问题情境,精讲多思,引发学生进行思考,加深学生对知识点的理解。课堂上可以采用小组的形式(同组、前后四人小组、六人小组乃至大组)进行合作学习,对该堂课的知识点进行反复强化,这样可以有效提高课堂教学效率。在课堂教学中还可以采用理论与实际结合、教师讲授与学生讨论结合、数形结合的方式来开展教学活动。另外,在数学专业课程教学中,也可以采用数学建模教学中普遍用到的案例教学和课堂讨论来丰富数学专业课程教学的形式和方法,还可以用“项目教学法”和“面向问题式教学法”来引入新的概念和定理,从而培养学生的团队协作意识与面对困难的勇气。
(三)在数学专业课程中巧妙渗透数学建模思想
1.在数学分析课程中渗透数学建模思想
广义地说,数学分析要研究的是与所谓连续性有关的数学问题,为此人们建立了许多有效的方法,其中重要的工作是确切地说清楚了极限现象,也就是在数学上合理地定义了极限。而极限概念是学生很难理解的一个概念,是教学中的一个难点。但极限也是从现实世界抽象出来的一个数学模型,教师可以用数学建模思想来解释这个概念,以此提高学生的学习兴趣。例如:我们可以利用《庄子·天下篇》中的一句话“一尺之锤,日取其半,万世不竭”来引入,引导学生分析并归纳出数列极限的概念。而在学习导数概念时,可以引入瞬时速度与曲线上某一点处的切线斜率这两个模型来抽象出共同的本质特点从而导出导数的概念,这样学生就不会觉得突兀,难以接受了。数学分析中有很多定理,在定理的证明过程中,传统的教学方式往往是用定理来证明定理,学生不容易理解。此时,可以先让学生了解定理产生的背景以及与定理有关的小故事,引起他们的兴趣,然后把定理的结论看作是一个特定的数学模型,教师通过定理的条件(看作是模型的假设)预先设计的问题情境引导学生去建立这个模型,从而证明出定理的结论。
2.在高等代数课程中渗透数学建模思想
《高等代数》是数学教育专业的三大专业基础课之一。该课程内容比较多,学时少,在有限的学时内要完成教学任务,教师只能在课堂教学中注重高等代数的基本概念、基本方法和基本思想的阐述,对于高等代数中问题产生的背景以及在学科中的应用和与中学内容的联系等内容就无法涉及,因而数学专业的大学新生很难迅速地由中学初等思维向大学高等思维转变,大部分学生都觉得高等代数太抽象、太难理解,甚至觉得没有用。面对这样的教学状况,教师可以考虑将数学建模思想融入高等代数课程当中,可以在概念与定理的教学中,先给出一些简单的数学模型例子,把实际问题融入高等代数的内容中,让学生知道抽象的代数概念也是来源于现实世界的,是与实际问题息息相关的,这样会激发学生的学习兴趣,有利于教学的开展。在高等代数教学中,主要涉及的内容是多项式概念、行列式概念、线性方程组概念、矩阵概念及线性空间概念,针对每一个概念,教师可以先找与它有关的实际问题作为一个简单的数学模型,在课堂上,可以让学生从该模型入手,小组讨论,展示结果,从而得到本堂课要学习的知识点。
3.在概率论与数理统计课程中渗透数学建模思想
近几年来,在全国大学生数学建模竞赛试题中,很多竞赛题目都用到了概率统计的知识。概率论与数理统计课程描述、分析和处理问题的方法与其他数学分支不同,它是一种观测试验与理性思维相结合的科学方法。概率统计中蕴涵着丰富的数学方法,如模型化法、构造法、变换法等。例如:现在备受大家关注的一种对人类生命产生严重威胁的疾病——脑卒中(也叫做脑中风),专家已经证实它的诱发与环境因素(包括气温和湿度)存在密切的关系。因此,我们需要针对脑卒中发病率与气温、气压以及相对湿度的关系建立数学模型,并结合高危人群的特征和关键指标,研究脑卒中发病的规律。首先,根据病人的基本信息,对其性别、年龄段、职业等三方面进行分类统计,利用赋值、作图等形式得出下面的结论:脑卒中男性患者多于女性患者;中老年人在发病人群中发病率最高,高达98%;在各类职业发病人群中农民的发病率最高(占68%),其次为退休人员(16%)和工人(11%)。其次,先对病例和气象因素数据进行分析、处理,运用图表的形式展现2007至2010年各月病例数和气象因素的变化规律,再利用圆形统计分析法通过三角函数变换计算出脑卒中的高峰期。进而采用多元线性回归分析,建立模型,运用最小二乘法计算得多元线性回归方程,并对其作随机误差项方差的估计得出回归方程的标准误差较大,进而采用8项气象指标分别与同期脑卒中的月发病例数进行单因素相关性分析,再应用后退法多元逐步回归分析多种气象因素共同作用与脑卒中的相关性,得出脑卒中与最高气压、平均气压、最高温度、平均相对湿度相关性较大。最后,通过网上查阅相关资料及有关文献,运用软件对其数据进行处理,计算出脑卒中发病率的各因素的爆发率,从而确定影响高危人群引发脑卒中疾病的重要因素。结合前面的结论,从脑卒中的可干预因素及不可干预因素中对脑卒中高危人群提出相应的预防措施和建议方案。可见,研究脑卒中发病的规律,利用概率统计知识建立数学模型对卫生部门和医疗机构各方面的改善和改革都具有实际意义。
4.在常微分方程课程中渗透数学建模思想
在常微分方程教学中,涉及建立数学模型的问题很多。教师在授课当中,要注重在实际问题中提炼出微分方程,同时进行求解。如传染病模型:我们知道各种传染病一直是大家关注的热点,然而不同类型的传染病它的传播过程有其各自不同的特点,弄清这些特点需要相当多的病理知识,我们不可能从医学的角度一一分析各种传染病的传播,而只能按照一般的传播机理来建立几种模型。最初建立的模型把病人人数看成是连续、可微函数,把每天每个病人有效接触的人数看成是常数,此模型不符合实际,基本上不能用,于是修改假设后得到si模型,此模型虽有所改进,但仍不符合实际,进一步修改假设,并针对不同情况建立sis模型和sir模型,这两个模型描述了传播过程、分析感染人数的变化规律,预测传染病高潮到来时刻,度量传染病蔓延的程度并探索制止蔓延的手段,是比较成功的模型。如正规战与游击战:在第一次世界大战期间,f.w.lanchester提出了几个预测战争结局的简单数学模型,其中有描述传统的正规战争的,也有考虑稍微复杂的游击战争的,以及双方分别使用正规部队和游击部队的混合战争的。后来对这些模型进行进一步的改进和完善,用以分析一些著名的战争。j.h.engel用二次大战末期美日硫磺岛战役中的美军战地记录,对正规战争模型进行了验证,发现模型结果与实际数据吻合得很好。
5.在考核中适当渗透数学建模思想
在传统的数学专业课程考核中,教师大都采用一套试卷来进行测试,试题的题型是固定的,内容是例题的翻版。这种考核方式根本不能看出学生对知识掌握的程度。因此,教师有必要在考核中适当引入一些数学建模问题;或者在考核中引入一些趣味游戏,由学生独立或组队去完成问题,记录成绩,把这作为学生平时成绩的一个方面。通过这种做法,学生体会到数学与实际确实是不可分开的,数学来源于实际,同时也体会到团队合作的重要性,从而获得除数学知识本身以外的素质与能力。
[ 参 考 文 献 ]
[1] 李大潜.中国大学生数学建模竞赛[m].北京: 高等教育出版社,2008.
[2] 姜启源, 谢金星, 叶俊. 数学模型(第三版)[m].北京:高等教育出版社,2003.
[3] 毕晓华,许钧.将数学建模思想融入应用型本科数学教学初探[j].教育与职业,2011,(9):113-114.
[4] 李大潜.将数学建模思想融入数学类主干课程[j].中国大学教学,2006,(1):9-11.
[5] 唐红兵. 浅谈《概率论》教学中如何融入数学建模[j]. 黑龙江生态工程职业学院学报,2010,23(4):101-102.
[6] 林远华,卢钰松.关于数学分析课程渗透数学建模思想的思考[j].科教文汇(下旬刊),2011,(4):72-73.
[7] 商秀印,顾志华.将数学建模思想融入大学数学课堂[j].长春理工大学学报, 2010,5(6):164-165.
[8] 刘振云.将数学建模思想融入高职数学教学初探[j].高等职业教育(天津职业大学学报), 2007,16(6):53-55.
[9] 王汝发.数学教学中融入数学文化与数学建模思想之探索[j].教育文化论坛, 2011,(4):90-93.
[责任编辑:陈 明]
推荐访问:数学